
International Journal of Scientific & Engineering Research Volume 4, Issue 2, February-2013                                                1 

ISSN 2229-5518   

 

IJSER © 2013 

http://www.ijser.org 

Applying Artificial Neural Network Proton - 

Proton Collisions at LHC  
Amr Radi 

  
Abstract—this paper shows that the use the optimal topology of an Artificial Neural Network (ANN) for a particular 

application is one of the difficult tasks. Neural Network is optimized by a Genetic Algorithm (GA), in a hybrid technique, 

to calculate the multiplicity distribution of the charged shower particles on Larger Hadron Collider (LHC). Moreover, 

ANN, as a machine learning technique, is usually used for modeling physical phenomena by establishing its new 

function. In case of modeling the p-p interactions at LHC experiments, ANN is used to simulate and predict the 

distribution, Pn, as a function of the number of charged particles multiplicity, n, the total center of mass energy ( s ), 

and the pseudo rapidity (). The discovered function, trained on experimental data of LHC, shows good match 

compared with the other models. 

Index Terms—Proton-Proton Interaction:  “Multiplicity Distribution”, “Modeling ", “Machine Learning ", “Artificial Neural 

Network”, and “Genetic Algorithm”. 

 

1 INTRODUCTION 
High Energy Physics (HEP) targeting on particle 
physics, searches for the fundamental particles and 
forces which construct the world surrounding us 
and understands how our universe works at its 
most fundamental level. Elementary particles of 
the Standard Model are gauge Bosons (force 
carriers) and Fermions which are classified into 
two groups: Leptons (i.e. Muons, Electrons, etc) 
and Quarks (Protons, Neutrons, etc).  

The study of the interactions between those 
elementary particles requests enormously high 
energy collisions as in LHC [1-8], up to the highest 
energy hadrons collider in the world s  =14 Tev.  
Experimental results provide excellent 
opportunities to discover the missing particles of 
the Standard Model.  As well as, LHC possibly will 
yield the way in the direction of our awareness of 
particle physics beyond the Standard Model. 

  
The proton-proton (p-p) interaction is one of the 

fundamental interactions in high-energy physics.  
In order to fully exploit the enormous physics 
potential, it is important to have a complete 
understanding of the reaction mechanism.  The 
particle multiplicity distributions, as one of the 
first measurements made at LHC, used to test 
various particle production models. 
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It is based on different physics mechanisms and 
also provide constrains on model features. Some of 
these models are based on string fragmentation 
mechanism [9-11] and some are based on Pomeron 
exchange [12]. 

Recently, different modeling methods, 
based on soft computing systems, include the 
application of Artificial Intelligence (AI) 
Techniques. Those Evolution Algorithms have a 
physical powerful existence in that field [13-17]. 
The behavior of the p-p interactions is complicated 
due to the nonlinear relationship between the 
interaction parameters and the output. To 
understand the interactions of fundamental 
particles, multipart data analysis are needed and 
AI techniques are vital. Those techniques are 
becoming useful as alternate approaches to 
conventional ones [18]. In this sense, AI 
techniques, such as Artificial Neural Network 
(ANN) [19], Genetic Algorithm (GA) [20], Genetic 
Programming (GP) [21 and Gene Expression 
Programming (GEP) [22], can be used as 
alternative tools for the simulation of these 
interactions [13-17, 21-23]. 

The motivation of using an ANN approach is its 
learning algorithm that learns the relationships 
between variables in sets of data and then builds 
models to explain these relationships 
(mathematically dependant).    

In this research, we have discovered the 
functions that describe the multiplicity distribution 
of the charged shower particles of p-p interactions 
at different values of high energies using the GA-
ANN technique. This paper is organized on five 
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sections. Section 2, gives a review to the basics of 
the ANN & GA technique. Section 3 explains how 
ANN & GA is used to model the p-p interaction. 
Finally, the results and conclusions are provided in 
sections 4 and 5 respectively. 

2  AN OVERVIEW OF ARTIFICIAL NEURAL 

NETWORKS (ANN) 

An ANN is a network of artificial neurons which 
can store, gain and utilize knowledge. Some 
researchers in ANNs decided that the name 
``neuron'' was inappropriate and used other terms, 
such as ``node''.  However, the use of the term 
neuron is now so deeply established that its 
continued general use seems assured.  A way to 
encompass the NNs studied in the literature is to 
regard them as dynamical systems controlled by 
synaptic matrixes (i.e. Parallel Distributed 
Processes (PDPs)) [24]. 
In the following sub-sections we introduce some of 
the concepts and the basic components of NNs: 

 
2.1 Neuron-like Processing Units 

A processing neuron based on neural functionality 
which equals to the summation of the products of 
the input patterns element {x1, x2, ..., xp} and its 
corresponding weights {w1, w2,..., wp} plus the bias 
θ. Some important concepts associated with this 
simplified neuron are defined below.  
A single-layer network is an area of neurons while 
a multilayer network consists of more than one 
area of neurons.  
Let ui

ℓ be the ith neuron in ℓth layer.  The input layer 
is called the xth layer and the output layer is called 
the Oth layer.  Let nℓ be the number of neurons in 
the ℓth layer.  The weight of the link between 
neuron ujℓ in layer ℓ and neuron ui

ℓ+1 in layer ℓ+1 
is denoted by wij

ℓ.  Let {x1, x2,..., xp} be the set of 
input patterns that the network is supposed to 
learn its classification and let {d1, d2,..., dp}be the 
corresponding desired output patterns.  It should 
be noted that xp is an n dimension vector {x1p, 
x2p,..., xnp} and dp is an n dimension vector 
{d1p,d2p,...,dnp}.  The pair (xp, dp) is called a training 
pattern. 
The output of a neuron ui

0 is the input xip (for input 
pattern p).  For the other layers, the network input 
netpi

ℓ+1 to a neuron ui
ℓ+1 for the input xpi

ℓ+1 is usually 
computed as follows:  
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where Opj
ℓ = xpi

ℓ+1 is the output of the neuron uj
ℓ of 

layer ℓ and  θi
ℓ+1 is the neuron's bias value of 

neuron ui
ℓ+1 of layer ℓ+1.  For the sake of a 

homogeneous representation, θi is often 
substituted by a ``bias neuron'' with a constant 
output 1.  This means that biases can be treated like 
weights, which is done throughout the remainder 
of the text.   

 

2.2 Activation Functions: 

The activation function converts the neuron input 
to its activation (i.e. a new state of activation) by f 
(netp).  This allows the variation of input 
conditions to affect the output, usually included as 
Op.   
 The sigmoid function, as a non-linear 
function, is also often used as an activation 
function.  The logistic function is an example of a 
sigmoid function of the following form: 
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where β determines the steepness of the activation 
function.   In the rest of this paper we assume that 
β=1. 

 

2.3 Network Architectures: 

Network architectures have different types 
(single-layer feedforward, multi-layer 
feedforward, and recurrent networks) [25]. In this 
paper the Multi-layer Feedforward Networks are 
considered, these contain one or more hidden 
layers.  Hidden layers are placed between input 
and output layers.  Those hidden layers enable 
extraction of higher-order features.   

  The input layer receives an external 
activation vector, and passes it via weighted 
connections to the neurons in the first hidden layer 
[25].  An example of this arrangement, a three layer 
NN, is shown in Fig1.  This is a common form of 
NN.   

 
Fig1 the three layers (input, hidden and output) of 
neurons are fully interconnected. 
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2.4 Neural Networks Learning: 

To use a NN, it is essential to have some form of 
training, through which the values of the weights 
in the network are adjusted to reflect the 
characteristics of the input data.  When the 
network is trained sufficiently, it will obtain the 
most nearest correct output for a presented set of 
input data.  
A set of well-defined rules for the solution of a 
learning problem is called a learning algorithm.  
No unique learning algorithm exists for the design 
of NN.  Learning algorithms differ from each other 
in the way in which the adjustment of Δwij to the 
synaptic weight wij is formulated.  In other words, 
the objective of the learning process is to tune the 
weights in the network so that the network 
performs the desired mapping of input to output 
activation.  
  NNs are claimed to have the feature of 
generalization, through which a trained NN is able 
to provide correct output data to a set of 
previously (unseen) input data.  Training 
determines the generalization capability in the 
network structure.  

Supervised learning is a class of learning 
rules for NNs. In which a teaching is provided by 
telling the network output required for a given 
input.  Weights are adjusted in the learning system 
so as to minimize the difference between the 
desired and actual outputs for each input training 
data.  An example of a supervised learning rule is 
the delta rule which aims to minimize the error 
function. This means that the actual response of 
each output neuron, in the network, approaches 
the desired response for that neuron. This is 
illustrated in fig. 2.   

The error εpi for the ith neuron ui
o of the 

output layer o for the training pair (xp, tp) is 
computed as:  

 o

pipipi ot   

This error is used to adjust the weights in 
such a way that the error is gradually reduced.  
The training process stops when the error for every 
training pair is reduced to an acceptable level, or 
when no further improvement is obtained. 

 

 
 
Fig.2. Example of Supervised Learning 
 

A method, known as “learning by epoch”, 
first sums gradient information for the whole 
pattern set and then updates the weights.  This 
method is also known as “batch learning” and 
most researchers use it for its good performance 
[25].  Each weight-update tries to minimize the 
summed error of the pattern set. The error function 
can be defined for one training pattern pair (xp, dp)  
as:  

 
Then, the error function can be defined for 

all the patterns (Known as the Total Sum of 
Squared, (TSS) errors as:  

 
The most desirable condition that we 

could achieve in any learning algorithm training is 
εpi ≥0.  Obviously, if this condition holds for all 
patterns in the training set, we can say that the 
algorithm found a global minimum. 

The weights in the network are changed 
along a search direction, to drive the weights in the 
direction of the estimated minimum.  The weight 
updating rule for the batch mode is given by:  

wij
s+1 = Δwij

ℓ(s) +  wij
ℓ(s) 

 Where wij
s+1 is the update weight of wij

ℓ of 
layer ℓ in the sth learning step, and s is the step 
number in the learning process. 

In training a network, the available input 
data set consists of many facts and is normally 
divided into two groups.  One group of facts is 
used as the training data set and the second group 
is retained for checking and testing the accuracy of 
the performance of the network after training. The 
proposed ANN model was trained using 
Levenberg-Marquardt optimization technique [26].  

Data collected from experiments are 
divided into two sets, namely, training set and 
predicating set. The training set is used to train the 
ANN model by adjusting the link weights of 
network model, which should include the data 
covering the entire experimental space. This means 
that the training data set has to be fairly large to 
contain all the required information and must 
include a wide variety of data from different 
experimental conditions, including different 
formulation composition and process parameters. 

Linearly, the training error keeps 
dropping. If the error stops decreasing, or 
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alternatively starts to rise, the ANN model starts to 
over-fit the data, and at this point, the training 
must be stopped. In case over-fitting or over-
learning occurs during the training process, it is 
usually advisable to decrease the number of 
hidden units and/or hidden layers. In contrast, if 
the network is not sufficiently powerful to model 
the underlying function, over-learning is not likely 
to occur, and the training errors will drop to a 
satisfactory level.  

 

3. AN OVERVIEW OF GENETIC ALGORITHM 

3.1. Introduction 

Evolutionary Computation (EC) uses 
computational models of evolutionary processes 
based on concepts in biological theory.  Varieties of 
these evolutionary computational models have 
been proposed and used in many applications, 
including optimization of NN parameters and 
searching for new NN learning rules.  We will refer 
to them as Evolutionary Algorithms (EAs) [27-29] 

 
 EAs are based on the evolution of a 

population which evolves according to rules of 
selection and other operators such as crossover and 
mutation.  Each individual in the population is 
given a measure of its fitness in the environment. 
Selection favors individual with high fitness.  
These individuals are perturbed using the 
operators.  This provides general heuristics for 
exploration in the environment.  This cycle of 
evaluation, selection, crossover, mutation and 
survival continues until some termination criterion 
is met.  Although, it is very simple from a 
biological point of view, these algorithms are 
sufficiently complex to provide strong and 
powerful adaptive search mechanisms.  

Genetic Algorithms (GAs) were developed 
in the 70s by John Holland [30], who strongly 
stressed recombination as the energetic potential of 
evolution [32].  The notion of using abstract syntax 
trees to represent programs in GAs, Genetic 
Programming (GP), was suggested in [33], first 
implemented in [34] and popularised in [35-37].  
The term Genetic Programming is used to refer to 
both tree-based GAs and the evolutionary 
generation of programs [38,39].   Although similar 
at the highest level, each of the two varieties 
implements genetic operators in a different 
manner.  This thesis concentrates on the tree-based 
variety.  We will discuss GP further in Section 3.4.  
In the following two sections, whose descriptions 

are mainly based on [30, 32, 33, 35, 36, 37], we give 
more background information about natural and 
artificial evolution in general, and on GAs in 
particular.  

        
3.2. Natural and Artificial Evolution      

As described by Darwin [40], evolution is 
the process by which populations of organisms 
gradually adapt over time to enhance their chances 
of surviving.  This is achieved by ensuring that the 
stronger individuals in the population have a 
higher chance of reproducing and creating 
children (offspring).  

In artificial evolution, the members of the 
population represent possible solutions to a 
particular optimization problem.  The problem 
itself represents the environment.  We must apply 
each potential solution to the problem and assign it 
a fitness value, indicating its performance on the 
problem.  The two essential features of natural 
evolution which we need to maintain are 
propagation of more adaptive features to future 
generations (by applying a selective pressure 
which gives better solutions a greater opportunity 
to reproduce) and the heritability of features from 
parent to children (we need to ensure that the 
process of reproduction keeps most of the features 
of the parent solution and yet allows for variety so 
that new features can be explored) [30].  
 
3.3. The Genetic Algorithm 

  GAs is powerful search and 
optimization techniques, based on the mechanics 
of natural selection [31]. Some basic terms used 
are:  
 A phenotype is a possible solution to the 

problem;  
 A chromosome is an encoding representation 

of a phenotype in a form that can be used;  
 A population is the variety of chromosomes 

that evolves from generation to generation;  
 A generation (a population set) represents a 

single step toward the solution; 
 Fitness is the measure of the performance of an 

individual on the problem; 

 Evaluation is the interpretation of the 
genotype into the phenotype and the 
computation of its fitness;  

 Genes are the parts of data which make up a 
chromosome.   

 
The advantage of GAs is that they have a 

consistent structure for different problems.  
Accordingly, one GA can be used for a variety of 
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optimization problems.  GAs is used for a number 
of different application areas [30].  GA is capable of 
finding good solutions quickly [32].  Also, the GA 
is inherently parallel, since a population of 
potential solutions is maintained. 

     
To solve an optimization problem, a GA 

requires four components and a termination 
criterion for the search.  The components are: a 
representation (encoding) of the problem, a fitness 
evaluation function, a population initialization 
procedure and a set of genetic operators.  

In addition, there are a set of GA control 
parameters, predefined to guide the GA, such as 
the size of the population, the method by which 
genetic operators are chosen, the probabilities of 
each genetic operator being chosen, the choice of 
methods for implementing probability in selection, 
the probability of mutation of a gene in a selected 
individual, the method used to select a crossover 
point for the recombination operator and the seed 
value used for the random number generator.   

The structure of a typical GA can be 
described as follows [41] 
 

(1) 0 → t 
(2) Population(s) →P(t) 
(3) Evaluate (P(t)) 
(4) REPEAT until solution is found 
(5) { 
(6)       t+1→t 
(7)       Selection (P(t)) →B(t) 
(8)       Breeding (B(t)) →R(t) 
(9)       Mutation (R(t)) →M(t) 
(10)       Evaluate M(t) 
(11)       Survival  (M(t), P(t-1)) →P(t) 
(12)   } 

Where 
     S is a random generator seed 

     t represents the generation 
     P(t) is the population in generation t 
     B(t) is the buffer of parents in generation t    
     R(t) are the children generated by recombining or cloning B(t)  

     M(t) are the children created by mutating R(t) 

  
In the algorithm, an initial population is 

generated in line 2.  Then, the algorithm computes 
the fitness for each member of the initial 
population in line 3.  Subsequently, a loop is 
entered based on whether or not the algorithm's 
termination criteria are met in line 4.  Line 6 
contains the control code for the inner loop in 
which a new generation is created.  Lines 7 
through 10 contain the part of the algorithm in 
which new individuals are generated.  First, a 
genetic operator is selected.  The particular 

numbers of parents for that operator are then 
selected.  The operator is then applied to generate 
one or more new children.  Finally, the new 
children are added to the new generation. 

 
Lines 11 and 12 serve to close the outer 

loop of the algorithm.  Fitness values are computed 
for each individual in the new generation.  These 
values are used to guide simulated natural 
selection in the new generation.  The termination 
criterion is tested and the algorithm is either 
repeated or terminated. 

 
The most significant differences in GAs are:  

 GAs search a population of points in parallel, 
not a single point 

  GAs do not require derivative information 
(unlike gradient descending methods, e.g. 
SBP) or other additional knowledge - only the 
objective function and corresponding fitness 
levels affect the directions of search   

 GAs use probabilistic transition rules, not 
deterministic ones 

 GAs can provide a number of potential 
solutions to a given problem 

 GAs operate on fixed length representations. 

 4. THE PROPOSED HYBRID GA - ANN 

MODELING: 

Genetic connectionism combines genetic 
search and connectionist computation.  GAs have 
been applied successfully to the problem of 
designing NNs with supervised learning 
processes, for evolving the architecture suitable for 
the problem [42-47].  However, these applications 
do not address the problem of training neural 
networks, since they still depend on other training 
methods to adjust the weights. 

  
4.1 GAs for Training ANNs 

GAs have been used for training ANNs 
either with fixed architectures or in combination 
with constructive/destructive methods. This can 
be made by replacing traditional learning 
algorithms such as gradient-based methods [48].  
Not only have GAs been used to perform weight 
training for supervised learning and for 
reinforcement learning applications, but they have 
also been used to select training data and to 
translate the output behavior of ANNs [49-51].  
GAs have been applied to the problem of finding 
ANN architectures [52-57], where an architecture 
specification indicates how many hidden units a 
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network should have and how these units should 
be connected. 

The process key in the evolutionary 
design of neural architectures is shown in Fig 3.  
The topologies of the network have to be distinct 
before any training process.  The definition of the 
architecture has great weight on the network 
performance, the effectiveness and efficiency of the 
learning process.  As discussed in [58], the 
alternative provided by destructive and 
constructive techniques is not satisfactory. 

The network architecture designing can be 
explained as a search in the architecture space that 
each point represents a different topology.  The 
search space is huge, even with a limited number 
of neurons, and a controlled connectivity. 
Additionally, the search space makes things even 
more difficult in some cases. For instance when 
networks with different topologies may show 
similar learning and generalization abilities, 
alternatively, networks with similar structures may 
have different performances. In addition, the 
performance evaluation depends on the training 
method and on the initial conditions (weight 
initialization) [59].  Building the architectures by 
means of GAs is strongly reliant on how the 
features of the network are encoded in the 
genotype. Using a bitstring is not essentially the 
best approach to evolve the architecture. Therefore, 
a determination has to be made concerning how 
the information about the architecture should be 
encoded in the genotype. 

To find good ANN architectures using 
GAs, we should know how to encode architectures 
(neurons, layers, and connections) in the 
chromosomes that can be manipulated by the GA.  
Encoding of ANNs onto a chromosome can take 
many different forms. 

 
4.2 Modeling by Using ANN and GA 

This study proposed a hybrid model 
combined of ANN and GA (We called it “GA–
ANN hybrid model”) for optimization of the 
weights of feed-forward neural networks to 
improve the effectiveness of the ANN model. 
Assuming that the structure of these networks has 
been decided.  Genetic algorithm is run to have the 
optimal parameters of the architectures, weights 
and biases of all the neurons which are joined to 
create vectors. 

We construct a genetic algorithm, which 
can search for the global optimum of the number 
of hidden units and the connection structure 
between the inputs and the output layers. During 

the weight training and adjusting process, the 
fitness functions of a neural network can be 
defined by considering two important factors: the 
error is the different between target and actual 
outputs. In this work, we defined the fitness 
function as the mean square error (SSE). 

The approach is to use the GA-ANN 
model that is enough intelligent to discover 
functions for p-p interactions (mean multiplicity 
distribution of charged particles with respects of 
the total center of mass energy).  The model is 
trained/predicated by using experimental data to 
simulate the p-p interaction.  

GA-ANN has the potential to discover a 
new model, to show that the data sets are 
subdivided into two sets (training and 
predication).  GA-ANN discovers a new model by 
using the training set while the predicated set is 
used to examine their generalization capabilities. 

To measure the error between the 
experimental data and the simulated data we used 
the statistic measures.  The total deviation of the 
response values from the fit to the response values. 
It is also called the summed square of residuals 
and is usually labeled as SSE.  The statistical 
measures of sum squared error (SSE),  





n

i

ii yySSE
1

2)ˆ(

 
where 

iŷ  is the predicted value for 
ix  

and iy  is the observed data value occurring at ix . 

 
The proposed GA-ANN hybrid model has 

been used to model the multiplicity distribution of 
the charged shower particles.  The proposed model 
was trained using Levenberg-Marquardt 
optimization technique [26]. The architecture of 
GA-ANN has three inputs and one output. The 
inputs are the charged particles multiplicity (n), the 

total center of mass energy ( s ), and the pseudo 

rapidity ().The output is the charged particles 
multiplicity distribution (Pn). Figure 3 shows the 
schematic of GA-ANN model. 

Data collected from experiments are 
divided into two sets, namely, training set and 
predicating set. The training set is used to train the 
GA- ANN hybrid model. The predicating data set 
is used to confirm the accuracy of the proposed 
model. It ensures that the relationship between 
inputs and outputs, based on the training and t 
predicating sets are real. The data set is divided 
into two groups 80% for training and 20% for 
predicating.  For work completeness, the final 
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weights and biases after training are given in 
Appendix A. 

 

 
Figure 3: Overview of GA-ANN hybrid 

model 

5 RESULTS AND DISCUSSION 

The input patterns of the designed GA-
ANN hybrid have been trained to produce target 
patterns that modeling the pseudo-rapidity 
distribution. GAs parameters are adjusted as in 
table 1. The fast Levenberg-Marquardt algorithm 
(LMA) has been employed to train the ANN. In 
order to obtain the optimal structure of ANN, we 
have used GA as hybrid model. 
 

Table 1. GA parameters for modelling ANN. 

Parameter Value 
 

Population size 4000 
 

Generation size 1000 
 

Mutation rate 0.001 

Crossover rate 0.9 

Fitness function MSE 

Selection method 
Tournament 

4 

GA type Standard GA 

 
 
 

 
A 
 

 
B 

Figure 4: A is the regression values 
between the target and the training well, B is the 
regression values between the target and the 
predication 
 

Simulation results based on both ANN 
and GA-ANN hybrid model, to model the 
distribution of shower charged particle produced 
for P-P at different the total center of mass energy, 

s  0.9 TeV, 2.36 TeV and 7 TeV, are given in 

Figure 5, 6, and 7 respectively. We notice that the 
curves obtained by the trained GA-ANN hybrid 
model show an exact fitting to the experimental 
data in the three cases. 

Figure 4 shows that the GA-ANN model 
succeeds to learn/predicate the training/ 
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predicating set respectively.  Where, R is the 
regression values for each of the raining set matrix. 

  
 
                                                                              

      

 

 
Figure 5: ANN and GA-ANN simulation 

results for charge particle Multiplicity distribution 

of shower p-p at s  =0.9 TeV 

 
 Then, the GA-ANN Hybrid model is able 

to exactly model for the charge particle multiplicity 
distribution. The total sum of squared error SSE, 
the weights and biases which used for the 
designed network is provided in the Appendix A. 

 
In this model we have obtained the 

minimum error (=0.0001) by using GA. Table 2 
shows a comparison between the ANN model and 
the GA-ANN model for the prediction of the 
pseudo-rapidity distribution. In the 3x15x15x1 
ANN structure, we have used 285 connections and 
obtained an error equal to 0.0001, while the 
connection in GA-ANN model is 225. Therefore, 

we noticed in the ANN model that by increasing 
the number of connections to 285 the error 
decreases to 0.01, but this needs more calculations. 
By using GA optimization search, we have 
obtained the structure which minimizes the 
number of connections equals to 229 only and the 
error (= 0.0001). This indicates that the GA-ANN 
hybrid model is more efficient than the ANN 
model.

  
Figure 6: ANN and GA-ANN simulation 

results for charge particle Multiplicity distribution 

of shower p-p at s  =2.36 TeV 

 
Table 2: Comparison between the different 

training algorithms (ANN and GA-ANN) for the 
for charge particle Multiplicity distribution. 

 

Structure Number of 
connections 

E
Error 
values 

Learning 
rule 

ANN: 
3 x15x15x1 

285 0
.01 

LMA 

GA 
optimization 
structure 

229 0
.0001 

GA 
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Figure 7: ANN and GA-ANN simulation 

results for charge particle Multiplicity distribution 

of shower p-p at s  =7 TeV 

5. CONCLUSIONS 

The paper presents the GA-ANN as a new 
technique for constructing the functions of the 
multiplicity distribution of charged particles, Pn (n, 

, s ) of p-p interaction. The discovered models 

show good match to the experimental data. 
Moreover, they are capable of predicating 

experimental data for Pn (n, , s ) that are not 

used in the training session.  
Consequence, the predicating values of Pn 

(n, , s )  in terms of the same parameters are in 

good agreement with the experimental data from 
Particle Data Group.  Finally, we conclude that 
GA-ANN has become one of important research 
areas in the field of high Energy physics. 

 

6.  END SECTIONS 

6.1 Appendix A  

The efficient ANN structure is given as 
follows: [3x15x15x1] or [ixjxkxm]. 

Weights coefficient after training are:  
Wji = [3.5001   -1.0299    1.6118 
    0.7565   -2.2408    3.2605 
   -1.4374    1.1033   -3.1349 
    2.0116    2.8137   -1.7322 
   -3.6012   -1.5717   -0.2805 
   -1.6741   -2.5844    2.7109 
   -2.0600   -3.1519    1.2488 
   -0.1986    1.0028   -4.0855 
    2.6272    0.8254    3.6292 
   -2.3420    3.0259   -1.9551 
   -3.2561    0.4683    3.0896 
    1.2442   -0.8996   -3.4896 
   -3.2589   -1.1887    2.0875 
   -1.0889   -1.2080    4.3688 
   -2.7820   -1.4291    2.3577 
    3.1861   -0.6309    2.0691 
    3.4979    0.2456   -2.6633 
   -0.4889    2.4145   -2.8041 
    2.1091   -0.1359   -3.4762 
   -0.1010    4.1758   -0.2120 
    3.5538   -1.5615   -1.4795 
   -3.4153    1.2517    2.1415 
    2.6232   -3.0757    0.0831 
    1.7632    1.9749   -2.5519 
    7.6987    0.0526    0.4267 
]. 
 

    Wkj = [-0.3294   -0.5006    0.0421    0.3603    0.5147 
   0.5506   -0.2498   -0.2678    0.2670   -0.3568 
   -0.3951    0.2529   -0.2169    0.4323    0.0683 
    0.1875   -0.2948    0.2705    0.2209    0.1928 
  -0.2207   -0.6121   -0.0693   -0.0125    0.4214 
  -0.4698   -0.0697   -0.4795    0.0425    0.2387 
   0.1975   -0.1441    0.2947   -0.1347   -0.0403 
   -0.0745    0.2345    0.1572   -0.2792    0.3784 
    0.1043    0.4784   -0.2899    0.2012   -0.4270 
    0.5578   -0.7176    0.3619    0.2601   -0.2738 
  -0.1081   -0.2412    0.0074   -0.3967   -0.2235 
    0.0466   -0.0407    0.0592    0.3128   -0.1570 
    0.4321    0.4505    0.0313   -0.5976   -0.0851 
  -0.4295   -0.4887    0.0694   -0.3939   -0.0354 
  -0.1972   -0.1416    0.1706   -0.1719   -0.0761 
   0.2102    0.0185   -0.1658   -0.1943   -0.4253 
    0.2685    0.4724    0.4946   -0.3538    0.1559 
    0.3198    0.1207    0.5657   -0.3894    0.1497 
   -0.5528    0.4031    0.5570    0.4562   -0.5802 
    0.3498   -0.3870    0.2453    0.4581    0.2430 
    0.2047   -0.0802    0.1584    0.2806   -0.2790 
   0.0981   -0.5055    0.2559   -0.0297   -0.2058 
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  -0.3498   -0.5513    0.0022   -0.3034    0.2156 
  -0.6226   -0.4085    0.4338   -0.0441   -0.4801 
   -0.0093    0.0875    0.0815    0.3935    0.1840 
    0.0063    0.2790    0.7558    0.3383    0.5882 
  -0.5506   -0.0518    0.5625    0.2459   -0.0612 
   0.0036    0.4404   -0.3268   -0.5626   -0.2253 
   0.5591   -0.2797   -0.0408    0.1302   -0.4361 
  -0.6123    0.4833   -0.0457    0.3927   -0.3694 
  -0.0746   -0.0978    0.0710   -0.7610    0.1412 
   -0.3373    0.4167    0.3421   -0.0577    0.2109 
   0.2422    0.2013   -0.1384   -0.3700   -0.4464 
   0.0868   -0.5964   -0.0837   -0.7971   -0.4299 
  -0.6500   -1.1315   -0.4557    1.6169   -0.3205 
    0.2205    1.0185    0.4752   -0.4155    0.1614 
    1.2311    0.0061   -0.0539    0.6813    0.9395 
  -0.4295   -0.3083    0.2768   -0.1151    0.0802 
   -0.6988    0.2346   -0.3455    0.0432    0.1663 
   -0.0601    0.0527    0.3519    0.3520   -0.7821 
  -0.6241   -0.1201   -0.4317    0.7441    0.7305 
    0.5433   -0.6909    0.4848   -0.3888    0.3710 
  -0.6920   -0.0190   -0.4892    0.1678    0.0808 
  -0.3752   -0.1745   -0.7304    0.0462   -0.3883 

]. 
 

 Wmk = [0.9283    1.6321    0.0356   -0.4147   -0.8312      
            -3.0722   -1.9368    1.7113    0.0100   -0.4066      
             0.0721    0.1362    0.4692   -0.9749    1.7950]. 

 
bi = [-4.7175  -2.2157  3.6932 ]. 
bj = [-4.1756   -3.8559  3.9766  -3.3430  2.7598  2.5040     
         2.1326  1.9297  -0.6547    0.7272  0.5859  -1.1575    
         0.3029  0.3486  -0.4088]. 

 
bk = [ 1.7214   -1.7100  1.5000  -1.2915   1.1448   
          1.0033  -0.6584   -0.4397  -0.4963   -0.3211   
          0.2594   -0.1649   0.0603  -0.1078]. 
bm = [-0.2071].  
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