
International Journal of Scientific & Engineering Research Volume 4, Issue 2, February-2013 1

ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

Applying Artificial Neural Network Proton -

Proton Collisions at LHC
Amr Radi

Abstract—this paper shows that the use the optimal topology of an Artificial Neural Network (ANN) for a particular

application is one of the difficult tasks. Neural Network is optimized by a Genetic Algorithm (GA), in a hybrid technique,

to calculate the multiplicity distribution of the charged shower particles on Larger Hadron Collider (LHC). Moreover,

ANN, as a machine learning technique, is usually used for modeling physical phenomena by establishing its new

function. In case of modeling the p-p interactions at LHC experiments, ANN is used to simulate and predict the

distribution, Pn, as a function of the number of charged particles multiplicity, n, the total center of mass energy (s),

and the pseudo rapidity (). The discovered function, trained on experimental data of LHC, shows good match

compared with the other models.

Index Terms—Proton-Proton Interaction: “Multiplicity Distribution”, “Modeling ", “Machine Learning ", “Artificial Neural

Network”, and “Genetic Algorithm”.

1 INTRODUCTION
High Energy Physics (HEP) targeting on particle
physics, searches for the fundamental particles and
forces which construct the world surrounding us
and understands how our universe works at its
most fundamental level. Elementary particles of
the Standard Model are gauge Bosons (force
carriers) and Fermions which are classified into
two groups: Leptons (i.e. Muons, Electrons, etc)
and Quarks (Protons, Neutrons, etc).

The study of the interactions between those
elementary particles requests enormously high
energy collisions as in LHC [1-8], up to the highest
energy hadrons collider in the world s =14 Tev.
Experimental results provide excellent
opportunities to discover the missing particles of
the Standard Model. As well as, LHC possibly will
yield the way in the direction of our awareness of
particle physics beyond the Standard Model.

The proton-proton (p-p) interaction is one of the

fundamental interactions in high-energy physics.
In order to fully exploit the enormous physics
potential, it is important to have a complete
understanding of the reaction mechanism. The
particle multiplicity distributions, as one of the
first measurements made at LHC, used to test
various particle production models.

————————————————

 Amr Radi, Department of Physics, Faculty of Sciences,

Ain Shams University, Abbassia, Cairo 11566, Egypt
and also at

 Center of Theoretical Physics at the British University
in Egypt, E-mail: Amr.radi@cern.ch &
Amr.radi@bue.edu.eg

It is based on different physics mechanisms and
also provide constrains on model features. Some of
these models are based on string fragmentation
mechanism [9-11] and some are based on Pomeron
exchange [12].

Recently, different modeling methods,
based on soft computing systems, include the
application of Artificial Intelligence (AI)
Techniques. Those Evolution Algorithms have a
physical powerful existence in that field [13-17].
The behavior of the p-p interactions is complicated
due to the nonlinear relationship between the
interaction parameters and the output. To
understand the interactions of fundamental
particles, multipart data analysis are needed and
AI techniques are vital. Those techniques are
becoming useful as alternate approaches to
conventional ones [18]. In this sense, AI
techniques, such as Artificial Neural Network
(ANN) [19], Genetic Algorithm (GA) [20], Genetic
Programming (GP) [21 and Gene Expression
Programming (GEP) [22], can be used as
alternative tools for the simulation of these
interactions [13-17, 21-23].

The motivation of using an ANN approach is its
learning algorithm that learns the relationships
between variables in sets of data and then builds
models to explain these relationships
(mathematically dependant).

In this research, we have discovered the
functions that describe the multiplicity distribution
of the charged shower particles of p-p interactions
at different values of high energies using the GA-
ANN technique. This paper is organized on five

http://wwwlhc01.cern.ch/
mailto:Amr.radi@cern.ch

International Journal of Scientific & Engineering Research Volume 4, Issue 2, February-2013 2

ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

sections. Section 2, gives a review to the basics of
the ANN & GA technique. Section 3 explains how
ANN & GA is used to model the p-p interaction.
Finally, the results and conclusions are provided in
sections 4 and 5 respectively.

2 AN OVERVIEW OF ARTIFICIAL NEURAL

NETWORKS (ANN)

An ANN is a network of artificial neurons which
can store, gain and utilize knowledge. Some
researchers in ANNs decided that the name
``neuron'' was inappropriate and used other terms,
such as ``node''. However, the use of the term
neuron is now so deeply established that its
continued general use seems assured. A way to
encompass the NNs studied in the literature is to
regard them as dynamical systems controlled by
synaptic matrixes (i.e. Parallel Distributed
Processes (PDPs)) [24].
In the following sub-sections we introduce some of
the concepts and the basic components of NNs:

2.1 Neuron-like Processing Units

A processing neuron based on neural functionality
which equals to the summation of the products of
the input patterns element {x1, x2, ..., xp} and its
corresponding weights {w1, w2,..., wp} plus the bias
θ. Some important concepts associated with this
simplified neuron are defined below.
A single-layer network is an area of neurons while
a multilayer network consists of more than one
area of neurons.
Let ui

ℓ be the ith neuron in ℓth layer. The input layer
is called the xth layer and the output layer is called
the Oth layer. Let nℓ be the number of neurons in
the ℓth layer. The weight of the link between
neuron ujℓ in layer ℓ and neuron ui

ℓ+1 in layer ℓ+1
is denoted by wij

ℓ. Let {x1, x2,..., xp} be the set of
input patterns that the network is supposed to
learn its classification and let {d1, d2,..., dp}be the
corresponding desired output patterns. It should
be noted that xp is an n dimension vector {x1p,
x2p,..., xnp} and dp is an n dimension vector
{d1p,d2p,...,dnp}. The pair (xp, dp) is called a training
pattern.
The output of a neuron ui

0 is the input xip (for input
pattern p). For the other layers, the network input
netpi

ℓ+1 to a neuron ui
ℓ+1 for the input xpi

ℓ+1 is usually
computed as follows:

1

1

1 




 l

i

l

pj

n

j

l

ij

l

pi
ow

l

net 

where Opj
ℓ = xpi

ℓ+1 is the output of the neuron uj
ℓ of

layer ℓ and θi
ℓ+1 is the neuron's bias value of

neuron ui
ℓ+1 of layer ℓ+1. For the sake of a

homogeneous representation, θi is often
substituted by a ``bias neuron'' with a constant
output 1. This means that biases can be treated like
weights, which is done throughout the remainder
of the text.

2.2 Activation Functions:

The activation function converts the neuron input
to its activation (i.e. a new state of activation) by f
(netp). This allows the variation of input
conditions to affect the output, usually included as
Op.
 The sigmoid function, as a non-linear
function, is also often used as an activation
function. The logistic function is an example of a
sigmoid function of the following form:

l
pinet

l

pi

l

pi
e

f neto 



1

1
)(

where β determines the steepness of the activation
function. In the rest of this paper we assume that
β=1.

2.3 Network Architectures:

Network architectures have different types
(single-layer feedforward, multi-layer
feedforward, and recurrent networks) [25]. In this
paper the Multi-layer Feedforward Networks are
considered, these contain one or more hidden
layers. Hidden layers are placed between input
and output layers. Those hidden layers enable
extraction of higher-order features.

 The input layer receives an external
activation vector, and passes it via weighted
connections to the neurons in the first hidden layer
[25]. An example of this arrangement, a three layer
NN, is shown in Fig1. This is a common form of
NN.

Fig1 the three layers (input, hidden and output) of
neurons are fully interconnected.

International Journal of Scientific & Engineering Research Volume 4, Issue 2, February-2013 3

ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

2.4 Neural Networks Learning:

To use a NN, it is essential to have some form of
training, through which the values of the weights
in the network are adjusted to reflect the
characteristics of the input data. When the
network is trained sufficiently, it will obtain the
most nearest correct output for a presented set of
input data.
A set of well-defined rules for the solution of a
learning problem is called a learning algorithm.
No unique learning algorithm exists for the design
of NN. Learning algorithms differ from each other
in the way in which the adjustment of Δwij to the
synaptic weight wij is formulated. In other words,
the objective of the learning process is to tune the
weights in the network so that the network
performs the desired mapping of input to output
activation.
 NNs are claimed to have the feature of
generalization, through which a trained NN is able
to provide correct output data to a set of
previously (unseen) input data. Training
determines the generalization capability in the
network structure.

Supervised learning is a class of learning
rules for NNs. In which a teaching is provided by
telling the network output required for a given
input. Weights are adjusted in the learning system
so as to minimize the difference between the
desired and actual outputs for each input training
data. An example of a supervised learning rule is
the delta rule which aims to minimize the error
function. This means that the actual response of
each output neuron, in the network, approaches
the desired response for that neuron. This is
illustrated in fig. 2.

The error εpi for the ith neuron ui
o of the

output layer o for the training pair (xp, tp) is
computed as:

 o

pipipi ot 

This error is used to adjust the weights in
such a way that the error is gradually reduced.
The training process stops when the error for every
training pair is reduced to an acceptable level, or
when no further improvement is obtained.

Fig.2. Example of Supervised Learning

A method, known as “learning by epoch”,
first sums gradient information for the whole
pattern set and then updates the weights. This
method is also known as “batch learning” and
most researchers use it for its good performance
[25]. Each weight-update tries to minimize the
summed error of the pattern set. The error function
can be defined for one training pattern pair (xp, dp)
as:

Then, the error function can be defined for

all the patterns (Known as the Total Sum of
Squared, (TSS) errors as:

The most desirable condition that we

could achieve in any learning algorithm training is
εpi ≥0. Obviously, if this condition holds for all
patterns in the training set, we can say that the
algorithm found a global minimum.

The weights in the network are changed
along a search direction, to drive the weights in the
direction of the estimated minimum. The weight
updating rule for the batch mode is given by:

wij
s+1 = Δwij

ℓ(s) + wij
ℓ(s)

 Where wij
s+1 is the update weight of wij

ℓ of
layer ℓ in the sth learning step, and s is the step
number in the learning process.

In training a network, the available input
data set consists of many facts and is normally
divided into two groups. One group of facts is
used as the training data set and the second group
is retained for checking and testing the accuracy of
the performance of the network after training. The
proposed ANN model was trained using
Levenberg-Marquardt optimization technique [26].

Data collected from experiments are
divided into two sets, namely, training set and
predicating set. The training set is used to train the
ANN model by adjusting the link weights of
network model, which should include the data
covering the entire experimental space. This means
that the training data set has to be fairly large to
contain all the required information and must
include a wide variety of data from different
experimental conditions, including different
formulation composition and process parameters.

Linearly, the training error keeps
dropping. If the error stops decreasing, or

International Journal of Scientific & Engineering Research Volume 4, Issue 2, February-2013 4

ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

alternatively starts to rise, the ANN model starts to
over-fit the data, and at this point, the training
must be stopped. In case over-fitting or over-
learning occurs during the training process, it is
usually advisable to decrease the number of
hidden units and/or hidden layers. In contrast, if
the network is not sufficiently powerful to model
the underlying function, over-learning is not likely
to occur, and the training errors will drop to a
satisfactory level.

3. AN OVERVIEW OF GENETIC ALGORITHM

3.1. Introduction

Evolutionary Computation (EC) uses
computational models of evolutionary processes
based on concepts in biological theory. Varieties of
these evolutionary computational models have
been proposed and used in many applications,
including optimization of NN parameters and
searching for new NN learning rules. We will refer
to them as Evolutionary Algorithms (EAs) [27-29]

 EAs are based on the evolution of a

population which evolves according to rules of
selection and other operators such as crossover and
mutation. Each individual in the population is
given a measure of its fitness in the environment.
Selection favors individual with high fitness.
These individuals are perturbed using the
operators. This provides general heuristics for
exploration in the environment. This cycle of
evaluation, selection, crossover, mutation and
survival continues until some termination criterion
is met. Although, it is very simple from a
biological point of view, these algorithms are
sufficiently complex to provide strong and
powerful adaptive search mechanisms.

Genetic Algorithms (GAs) were developed
in the 70s by John Holland [30], who strongly
stressed recombination as the energetic potential of
evolution [32]. The notion of using abstract syntax
trees to represent programs in GAs, Genetic
Programming (GP), was suggested in [33], first
implemented in [34] and popularised in [35-37].
The term Genetic Programming is used to refer to
both tree-based GAs and the evolutionary
generation of programs [38,39]. Although similar
at the highest level, each of the two varieties
implements genetic operators in a different
manner. This thesis concentrates on the tree-based
variety. We will discuss GP further in Section 3.4.
In the following two sections, whose descriptions

are mainly based on [30, 32, 33, 35, 36, 37], we give
more background information about natural and
artificial evolution in general, and on GAs in
particular.

3.2. Natural and Artificial Evolution

As described by Darwin [40], evolution is
the process by which populations of organisms
gradually adapt over time to enhance their chances
of surviving. This is achieved by ensuring that the
stronger individuals in the population have a
higher chance of reproducing and creating
children (offspring).

In artificial evolution, the members of the
population represent possible solutions to a
particular optimization problem. The problem
itself represents the environment. We must apply
each potential solution to the problem and assign it
a fitness value, indicating its performance on the
problem. The two essential features of natural
evolution which we need to maintain are
propagation of more adaptive features to future
generations (by applying a selective pressure
which gives better solutions a greater opportunity
to reproduce) and the heritability of features from
parent to children (we need to ensure that the
process of reproduction keeps most of the features
of the parent solution and yet allows for variety so
that new features can be explored) [30].

3.3. The Genetic Algorithm

 GAs is powerful search and
optimization techniques, based on the mechanics
of natural selection [31]. Some basic terms used
are:
 A phenotype is a possible solution to the

problem;
 A chromosome is an encoding representation

of a phenotype in a form that can be used;
 A population is the variety of chromosomes

that evolves from generation to generation;
 A generation (a population set) represents a

single step toward the solution;
 Fitness is the measure of the performance of an

individual on the problem;

 Evaluation is the interpretation of the
genotype into the phenotype and the
computation of its fitness;

 Genes are the parts of data which make up a
chromosome.

The advantage of GAs is that they have a

consistent structure for different problems.
Accordingly, one GA can be used for a variety of

International Journal of Scientific & Engineering Research Volume 4, Issue 2, February-2013 5

ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

optimization problems. GAs is used for a number
of different application areas [30]. GA is capable of
finding good solutions quickly [32]. Also, the GA
is inherently parallel, since a population of
potential solutions is maintained.

To solve an optimization problem, a GA

requires four components and a termination
criterion for the search. The components are: a
representation (encoding) of the problem, a fitness
evaluation function, a population initialization
procedure and a set of genetic operators.

In addition, there are a set of GA control
parameters, predefined to guide the GA, such as
the size of the population, the method by which
genetic operators are chosen, the probabilities of
each genetic operator being chosen, the choice of
methods for implementing probability in selection,
the probability of mutation of a gene in a selected
individual, the method used to select a crossover
point for the recombination operator and the seed
value used for the random number generator.

The structure of a typical GA can be
described as follows [41]

(1) 0 → t
(2) Population(s) →P(t)
(3) Evaluate (P(t))
(4) REPEAT until solution is found
(5) {
(6) t+1→t
(7) Selection (P(t)) →B(t)
(8) Breeding (B(t)) →R(t)
(9) Mutation (R(t)) →M(t)
(10) Evaluate M(t)
(11) Survival (M(t), P(t-1)) →P(t)
(12) }

Where
 S is a random generator seed

 t represents the generation
 P(t) is the population in generation t
 B(t) is the buffer of parents in generation t
 R(t) are the children generated by recombining or cloning B(t)

 M(t) are the children created by mutating R(t)

In the algorithm, an initial population is

generated in line 2. Then, the algorithm computes
the fitness for each member of the initial
population in line 3. Subsequently, a loop is
entered based on whether or not the algorithm's
termination criteria are met in line 4. Line 6
contains the control code for the inner loop in
which a new generation is created. Lines 7
through 10 contain the part of the algorithm in
which new individuals are generated. First, a
genetic operator is selected. The particular

numbers of parents for that operator are then
selected. The operator is then applied to generate
one or more new children. Finally, the new
children are added to the new generation.

Lines 11 and 12 serve to close the outer

loop of the algorithm. Fitness values are computed
for each individual in the new generation. These
values are used to guide simulated natural
selection in the new generation. The termination
criterion is tested and the algorithm is either
repeated or terminated.

The most significant differences in GAs are:

 GAs search a population of points in parallel,
not a single point

 GAs do not require derivative information
(unlike gradient descending methods, e.g.
SBP) or other additional knowledge - only the
objective function and corresponding fitness
levels affect the directions of search

 GAs use probabilistic transition rules, not
deterministic ones

 GAs can provide a number of potential
solutions to a given problem

 GAs operate on fixed length representations.

 4. THE PROPOSED HYBRID GA - ANN

MODELING:

Genetic connectionism combines genetic
search and connectionist computation. GAs have
been applied successfully to the problem of
designing NNs with supervised learning
processes, for evolving the architecture suitable for
the problem [42-47]. However, these applications
do not address the problem of training neural
networks, since they still depend on other training
methods to adjust the weights.

4.1 GAs for Training ANNs

GAs have been used for training ANNs
either with fixed architectures or in combination
with constructive/destructive methods. This can
be made by replacing traditional learning
algorithms such as gradient-based methods [48].
Not only have GAs been used to perform weight
training for supervised learning and for
reinforcement learning applications, but they have
also been used to select training data and to
translate the output behavior of ANNs [49-51].
GAs have been applied to the problem of finding
ANN architectures [52-57], where an architecture
specification indicates how many hidden units a

International Journal of Scientific & Engineering Research Volume 4, Issue 2, February-2013 6

ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

network should have and how these units should
be connected.

The process key in the evolutionary
design of neural architectures is shown in Fig 3.
The topologies of the network have to be distinct
before any training process. The definition of the
architecture has great weight on the network
performance, the effectiveness and efficiency of the
learning process. As discussed in [58], the
alternative provided by destructive and
constructive techniques is not satisfactory.

The network architecture designing can be
explained as a search in the architecture space that
each point represents a different topology. The
search space is huge, even with a limited number
of neurons, and a controlled connectivity.
Additionally, the search space makes things even
more difficult in some cases. For instance when
networks with different topologies may show
similar learning and generalization abilities,
alternatively, networks with similar structures may
have different performances. In addition, the
performance evaluation depends on the training
method and on the initial conditions (weight
initialization) [59]. Building the architectures by
means of GAs is strongly reliant on how the
features of the network are encoded in the
genotype. Using a bitstring is not essentially the
best approach to evolve the architecture. Therefore,
a determination has to be made concerning how
the information about the architecture should be
encoded in the genotype.

To find good ANN architectures using
GAs, we should know how to encode architectures
(neurons, layers, and connections) in the
chromosomes that can be manipulated by the GA.
Encoding of ANNs onto a chromosome can take
many different forms.

4.2 Modeling by Using ANN and GA

This study proposed a hybrid model
combined of ANN and GA (We called it “GA–
ANN hybrid model”) for optimization of the
weights of feed-forward neural networks to
improve the effectiveness of the ANN model.
Assuming that the structure of these networks has
been decided. Genetic algorithm is run to have the
optimal parameters of the architectures, weights
and biases of all the neurons which are joined to
create vectors.

We construct a genetic algorithm, which
can search for the global optimum of the number
of hidden units and the connection structure
between the inputs and the output layers. During

the weight training and adjusting process, the
fitness functions of a neural network can be
defined by considering two important factors: the
error is the different between target and actual
outputs. In this work, we defined the fitness
function as the mean square error (SSE).

The approach is to use the GA-ANN
model that is enough intelligent to discover
functions for p-p interactions (mean multiplicity
distribution of charged particles with respects of
the total center of mass energy). The model is
trained/predicated by using experimental data to
simulate the p-p interaction.

GA-ANN has the potential to discover a
new model, to show that the data sets are
subdivided into two sets (training and
predication). GA-ANN discovers a new model by
using the training set while the predicated set is
used to examine their generalization capabilities.

To measure the error between the
experimental data and the simulated data we used
the statistic measures. The total deviation of the
response values from the fit to the response values.
It is also called the summed square of residuals
and is usually labeled as SSE. The statistical
measures of sum squared error (SSE),





n

i

ii yySSE
1

2)ˆ(

where

iŷ is the predicted value for
ix

and iy is the observed data value occurring at ix .

The proposed GA-ANN hybrid model has

been used to model the multiplicity distribution of
the charged shower particles. The proposed model
was trained using Levenberg-Marquardt
optimization technique [26]. The architecture of
GA-ANN has three inputs and one output. The
inputs are the charged particles multiplicity (n), the

total center of mass energy (s), and the pseudo

rapidity ().The output is the charged particles
multiplicity distribution (Pn). Figure 3 shows the
schematic of GA-ANN model.

Data collected from experiments are
divided into two sets, namely, training set and
predicating set. The training set is used to train the
GA- ANN hybrid model. The predicating data set
is used to confirm the accuracy of the proposed
model. It ensures that the relationship between
inputs and outputs, based on the training and t
predicating sets are real. The data set is divided
into two groups 80% for training and 20% for
predicating. For work completeness, the final

International Journal of Scientific & Engineering Research Volume 4, Issue 2, February-2013 7

ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

weights and biases after training are given in
Appendix A.

Figure 3: Overview of GA-ANN hybrid

model

5 RESULTS AND DISCUSSION

The input patterns of the designed GA-
ANN hybrid have been trained to produce target
patterns that modeling the pseudo-rapidity
distribution. GAs parameters are adjusted as in
table 1. The fast Levenberg-Marquardt algorithm
(LMA) has been employed to train the ANN. In
order to obtain the optimal structure of ANN, we
have used GA as hybrid model.

Table 1. GA parameters for modelling ANN.

Parameter Value

Population size 4000

Generation size 1000

Mutation rate 0.001

Crossover rate 0.9

Fitness function MSE

Selection method
Tournament

4

GA type Standard GA

A

B

Figure 4: A is the regression values
between the target and the training well, B is the
regression values between the target and the
predication

Simulation results based on both ANN
and GA-ANN hybrid model, to model the
distribution of shower charged particle produced
for P-P at different the total center of mass energy,

s 0.9 TeV, 2.36 TeV and 7 TeV, are given in

Figure 5, 6, and 7 respectively. We notice that the
curves obtained by the trained GA-ANN hybrid
model show an exact fitting to the experimental
data in the three cases.

Figure 4 shows that the GA-ANN model
succeeds to learn/predicate the training/

International Journal of Scientific & Engineering Research Volume 4, Issue 2, February-2013 8

ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

predicating set respectively. Where, R is the
regression values for each of the raining set matrix.

Figure 5: ANN and GA-ANN simulation

results for charge particle Multiplicity distribution

of shower p-p at s =0.9 TeV

 Then, the GA-ANN Hybrid model is able

to exactly model for the charge particle multiplicity
distribution. The total sum of squared error SSE,
the weights and biases which used for the
designed network is provided in the Appendix A.

In this model we have obtained the

minimum error (=0.0001) by using GA. Table 2
shows a comparison between the ANN model and
the GA-ANN model for the prediction of the
pseudo-rapidity distribution. In the 3x15x15x1
ANN structure, we have used 285 connections and
obtained an error equal to 0.0001, while the
connection in GA-ANN model is 225. Therefore,

we noticed in the ANN model that by increasing
the number of connections to 285 the error
decreases to 0.01, but this needs more calculations.
By using GA optimization search, we have
obtained the structure which minimizes the
number of connections equals to 229 only and the
error (= 0.0001). This indicates that the GA-ANN
hybrid model is more efficient than the ANN
model.

Figure 6: ANN and GA-ANN simulation

results for charge particle Multiplicity distribution

of shower p-p at s =2.36 TeV

Table 2: Comparison between the different

training algorithms (ANN and GA-ANN) for the
for charge particle Multiplicity distribution.

Structure Number of
connections

E
Error
values

Learning
rule

ANN:
3 x15x15x1

285 0
.01

LMA

GA
optimization
structure

229 0
.0001

GA

International Journal of Scientific & Engineering Research Volume 4, Issue 2, February-2013 9

ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

Figure 7: ANN and GA-ANN simulation

results for charge particle Multiplicity distribution

of shower p-p at s =7 TeV

5. CONCLUSIONS

The paper presents the GA-ANN as a new
technique for constructing the functions of the
multiplicity distribution of charged particles, Pn (n,

, s) of p-p interaction. The discovered models

show good match to the experimental data.
Moreover, they are capable of predicating

experimental data for Pn (n, , s) that are not

used in the training session.
Consequence, the predicating values of Pn

(n, , s) in terms of the same parameters are in

good agreement with the experimental data from
Particle Data Group. Finally, we conclude that
GA-ANN has become one of important research
areas in the field of high Energy physics.

6. END SECTIONS

6.1 Appendix A

The efficient ANN structure is given as
follows: [3x15x15x1] or [ixjxkxm].

Weights coefficient after training are:
Wji = [3.5001 -1.0299 1.6118
 0.7565 -2.2408 3.2605
 -1.4374 1.1033 -3.1349
 2.0116 2.8137 -1.7322
 -3.6012 -1.5717 -0.2805
 -1.6741 -2.5844 2.7109
 -2.0600 -3.1519 1.2488
 -0.1986 1.0028 -4.0855
 2.6272 0.8254 3.6292
 -2.3420 3.0259 -1.9551
 -3.2561 0.4683 3.0896
 1.2442 -0.8996 -3.4896
 -3.2589 -1.1887 2.0875
 -1.0889 -1.2080 4.3688
 -2.7820 -1.4291 2.3577
 3.1861 -0.6309 2.0691
 3.4979 0.2456 -2.6633
 -0.4889 2.4145 -2.8041
 2.1091 -0.1359 -3.4762
 -0.1010 4.1758 -0.2120
 3.5538 -1.5615 -1.4795
 -3.4153 1.2517 2.1415
 2.6232 -3.0757 0.0831
 1.7632 1.9749 -2.5519
 7.6987 0.0526 0.4267
].

 Wkj = [-0.3294 -0.5006 0.0421 0.3603 0.5147
 0.5506 -0.2498 -0.2678 0.2670 -0.3568
 -0.3951 0.2529 -0.2169 0.4323 0.0683
 0.1875 -0.2948 0.2705 0.2209 0.1928
 -0.2207 -0.6121 -0.0693 -0.0125 0.4214
 -0.4698 -0.0697 -0.4795 0.0425 0.2387
 0.1975 -0.1441 0.2947 -0.1347 -0.0403
 -0.0745 0.2345 0.1572 -0.2792 0.3784
 0.1043 0.4784 -0.2899 0.2012 -0.4270
 0.5578 -0.7176 0.3619 0.2601 -0.2738
 -0.1081 -0.2412 0.0074 -0.3967 -0.2235
 0.0466 -0.0407 0.0592 0.3128 -0.1570
 0.4321 0.4505 0.0313 -0.5976 -0.0851
 -0.4295 -0.4887 0.0694 -0.3939 -0.0354
 -0.1972 -0.1416 0.1706 -0.1719 -0.0761
 0.2102 0.0185 -0.1658 -0.1943 -0.4253
 0.2685 0.4724 0.4946 -0.3538 0.1559
 0.3198 0.1207 0.5657 -0.3894 0.1497
 -0.5528 0.4031 0.5570 0.4562 -0.5802
 0.3498 -0.3870 0.2453 0.4581 0.2430
 0.2047 -0.0802 0.1584 0.2806 -0.2790
 0.0981 -0.5055 0.2559 -0.0297 -0.2058

International Journal of Scientific & Engineering Research Volume 4, Issue 2, February-2013 10

ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

 -0.3498 -0.5513 0.0022 -0.3034 0.2156
 -0.6226 -0.4085 0.4338 -0.0441 -0.4801
 -0.0093 0.0875 0.0815 0.3935 0.1840
 0.0063 0.2790 0.7558 0.3383 0.5882
 -0.5506 -0.0518 0.5625 0.2459 -0.0612
 0.0036 0.4404 -0.3268 -0.5626 -0.2253
 0.5591 -0.2797 -0.0408 0.1302 -0.4361
 -0.6123 0.4833 -0.0457 0.3927 -0.3694
 -0.0746 -0.0978 0.0710 -0.7610 0.1412
 -0.3373 0.4167 0.3421 -0.0577 0.2109
 0.2422 0.2013 -0.1384 -0.3700 -0.4464
 0.0868 -0.5964 -0.0837 -0.7971 -0.4299
 -0.6500 -1.1315 -0.4557 1.6169 -0.3205
 0.2205 1.0185 0.4752 -0.4155 0.1614
 1.2311 0.0061 -0.0539 0.6813 0.9395
 -0.4295 -0.3083 0.2768 -0.1151 0.0802
 -0.6988 0.2346 -0.3455 0.0432 0.1663
 -0.0601 0.0527 0.3519 0.3520 -0.7821
 -0.6241 -0.1201 -0.4317 0.7441 0.7305
 0.5433 -0.6909 0.4848 -0.3888 0.3710
 -0.6920 -0.0190 -0.4892 0.1678 0.0808
 -0.3752 -0.1745 -0.7304 0.0462 -0.3883

].

 Wmk = [0.9283 1.6321 0.0356 -0.4147 -0.8312
 -3.0722 -1.9368 1.7113 0.0100 -0.4066
 0.0721 0.1362 0.4692 -0.9749 1.7950].

bi = [-4.7175 -2.2157 3.6932].
bj = [-4.1756 -3.8559 3.9766 -3.3430 2.7598 2.5040
 2.1326 1.9297 -0.6547 0.7272 0.5859 -1.1575
 0.3029 0.3486 -0.4088].

bk = [1.7214 -1.7100 1.5000 -1.2915 1.1448
 1.0033 -0.6584 -0.4397 -0.4963 -0.3211
 0.2594 -0.1649 0.0603 -0.1078].
bm = [-0.2071].

6.2 Acknowledgment

The authors highly acknowledge and
deeply appreciate the supports of the Egyptian
Academy of Scientific Research and Technology
(ASRT) and the Egyptian Network for High
Energy Physics (ENHEP).

7. REFERANCE

1) CMS Collaboration, J. High Energy Phys. 01 079(2011).

2) CMS Collaboration, J. High Energy Phys. 08 141(2011).
3) CMS Collaboration, Phys. Rev. Lett. 105 022002(2010).

4) ATLAS Collaboration, Phys. Lett. B 707 330-348(2012).
5) ATLAS Collaboration, Phys. Lett. B, 2011.
6) ALICE Collaboration, Phys. Lett. B 693 53-68(2010).

7) ALICE Collaboration, Eur. Phys. J. C 68345-354 (2010).
8) TOTEM Collaboration, EPL 96 21002(2011).

9) M. Jacob, R. Slansky, Phys. Rev. D 5, 1847 (1972)
10) R. Hwa, Phys. Rev. D 1, 1790 (1970)

11) R. Hwa, Phys. Rev. Lett. 26, 1143 (1971)
12) R. Engel, Z. Phys. C 66 (1995) 203; R. Engel, J. Ranft and

S. Roesler, Phys. Rev. D 52 (1995).
13) L. Teodorescu, D. Sherwood, Comput. Phys. Commun.

178, 409 (2008)

14) L. Teodorescu, IEEE T. Nucl. Sci. 53, 2221 (2006)
15) J.M. Link, Nucl. Instrum. Meth. A 551, 504 (2005)

16) S. Yaseen El-Bakry, Amr Radi, Int. J. Mod. Phys. C 18,
351 (2007)

17) E. El-dahshan, A. Radi, M.Y. El-Bakry, Int. J. Mod.

Phys. C 20, 1817 (2009)
18) S. Whiteson, D. Whiteson, Eng. Appl. Artif. Intel. 22,

1203 (2009)
19) S. Haykin, Neural networks a comprehensive foundation

(2nd ed.), Prentice Hall (1999).
20) J.H. Holland, Adaptation in Natural and Artificial

Systems (University of Michigan Press, Ann Arbor,

1975)
21) J.R. Koza, Genetic Programming: On the Programming

of Computers by means of Natural Selection (The MIT
Press, Cambridge, MA, 1992)

22) Ferreira, C., Gene Expression Programming: Mathematical
Modeling by an Artificial Intelligence, 2nd Edition,
Springer-Verlag Germany2006.

23) A.E. Eiben, J.E. Smith, Introduction to Evolutionary
Algorithms (Springer, Berlin, 2003)

24) Amr Radi, Discovery of Neural network learning rules
using genetic programming. PHD, the School of

computers Sciences, Birmingham University, 2000.
25) L Teodorescu., High energy physics data analysis with

gene expression programming. In 2005 IEEE Nuclear

Science Symposium Conference Record, Vol. 1, pp. 143-
147, 2005.

26) M.T. Hagan and M.B. Menhaj, "Training feedforward
networks with the Marquardt algorithm", IEEE
Transactions on Neural Networks, Vol 6, pp 861-867,

1994.
27) T. Back, Evolutionary Algorithms in Theory and

Practice, Oxford University Press, New York, 1996.
28) D. B. Fogel (1994) "An Introduction to

Simulated Evolutionary Optimization," IEEE Trans.
29) Neural Networks, Vol. 5:1, pp. 3-14.
30) T. Back, U. Hammel, and H.-P. Schwefel (1997)

"Evolutionary Computation: Comments on
31) the History and Current State," IEEE

Trans. Evolutionary Computation, Vol. 1:1, pp. 3-17.
32) . H. Holland. Adaptation in Natural and Artificial

Systems. The University of Michigan Press, Ann Arbor,
Michigan, 1975.

33) Fogel DB (1995) Evolutionary Computation: Toward a

New Philosophy of Machine Intelligence, IEEE Press,
Piscataway, NJ.

34) D. E. Goldberg, Genetic Algorithm in Search
Optimization and Machine Learning(Addison-Wesley,

New York, 1989).
35) Richard Forsyth. Richard Forsyth. BEAGLE A

Darwinian Approach to Pattern Recognition.

Kybernetes, 10(3):159-166, 1981.
36) Cramer, Nichael Lynn (1985), "A representation for the

Adaptive Generation of Simple Sequential Programs"
in Proceedings of an International Conference on

http://dx.doi.org/10.1007/JHEP01%282011%29079
http://dx.doi.org/10.1007/JHEP08%282011%29141
http://dx.doi.org/10.1103/PhysRevLett.105.022002
http://dx.doi.org/10.1016/j.physletb.2011.12.056
http://cdsweb.cern.ch/ejournals.py?publication=Phys.+Lett.+B
http://dx.doi.org/10.1016/j.physletb.2010.08.026
http://dx.doi.org/10.1140/epjc/s10052-010-1350-2
http://dx.doi.org/10.1209/0295-5075/96/21002
http://www.sover.net/~nichael/nlc-publications/icga85/index.html
http://www.sover.net/~nichael/nlc-publications/icga85/index.html

International Journal of Scientific & Engineering Research Volume 4, Issue 2, February-2013 11

ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

Genetic Algorithms and the Applications, Grefenstette,
John J. (ed.), CMU

37) Koza, J.R. (1992), Genetic Programming: On the
Programming of Computers by Means of Natural

Selection, MIT Press
38) Koza, J.R. (1994), Genetic Programming II: Automatic

Discovery of Reusable Programs, MIT Press
39) Koza, J.R., Bennett, F.H., Andre, D., and Keane, M.A.

(1999), Genetic Programming III: Darwinian Invention

and Problem Solving, Morgan Kaufmann
40) Banzhaf, W., P. Nordin, R. E. Keller, and F. D.

Francone, 1998. Genetic Programming: An
Introduction: On the Automatic Evolution of Computer
Programs and its Applications, Morgan Kaufmann.

41) Mitchell, M., 1996. An Introduction to Genetic
Algorithms, MIT Press.

42) Darwin, C 1959. The Autobiography of Charles Darwin:
With original omissions restored, edited with appendix

and notes by his grand-daughter, Nora Barlow, Norton.
43) Darrel Whitley, “A genetic algorithm tutorial”,

Statistics and Computing (1994) 4, 65-85.

44) A new algorithm for developing dynamic radial basis
function neural network models based on genetic

algorithms
45) H Sarimveis, A Alexandridis, S Mazarkakis, G Bafas

in Computers & Chemical Engineering (2004)
46) An optimizing BP neural network algorithm based on

genetic algorithm

47) Ding Shifei, Su Chunyang in Artificial Intelligence
Review (2010)

48) Hierarchical genetic algorithm based neural network
design

49) G G Yen, H Lu in IEEE Symposium on Combinations of
Evolutionary Computation and Neural
Networks (2000)

50) Genetic Algorithm based Selective Neural Network
Ensemble

51) Z H Zhou, J X Wu, Y Jiang, S F Chen in Proceedings of
the 17th International Joint Conference on Artificial
Intelligence (2001)

52) Modified backpropagation algorithms for training the
multilayer feedforward neural networks with hard-

limiting neurons
53) Xiangui Yu, N K Loh, GA Jullien, WC Miller

in Proceedings of Canadian Conference on Electrical
and Computer Engineering (1993)

54) Training Feedforward Neural Networks Using Genetic

Algorithms
55) David J Montana, Lawrence Davis in Machine

Learning (1989)
56) A.J.F. van Rooij; L.C. Jain and R.P. Johnson, Neural

network training using genetic algorithms. (Singapore:
World Scientific, 1996).

57) Maniezzo, 1994): Vittorio Maniezzo: “Genetic Evolution

of the Topology and
58) Weight Distribution of Neural Networks”, in: IEEE

Transactions of Neural
59) Networks, Vol. 5, No. 1, pp 39-53

60) Bornholdt, 1992): Stefan Bornholdt and Dirk Graudenz:
“General Asymmet-

61) ric Neural Networks and Structure Design by Genetic

Algorithms”, in:
62) Neural Networks, Vol. 5, pp. 327-334, Pergamon Press

63) Kitano, 1990a): Hiroaki Kitano: “Designing Neural
Networks Using Genetic

64) Algorithms with Graph Generation Systems”,
in: Complex Systems, No. 4,

65) p. 461-476
66) NOLFI, S., & Parisi, D. (1994) 'Desired answers do not

correspond to good teaching inputs in ecological neural
networks', Neural processing letters, Vol. 1(2), p. 1-4.

67) NOLFI, S., & Parisi, D. (1996) 'Learning to adapt to
changing environments in evolving neural
networks', Adaptive Behavior, Vol. 5(1), pp. 75-97.

68) NOLFI, S., Parisi, D., & Elman, J. L. (1994) 'Learning
and evolution in neural networks', Adaptive Behavior,

3(1), pp. 5-28.
69) PUJOL, J. C. F., & Poli, R. (1998) 'Efficient evolution of

asymmetric recurrent neural networks using a two-

dimensional representation', Proceedings of the first
European workshop on genetic programming

(EUROGP) , pp. 130-141.
70) MILLER, G. F., Todd, P. M., & Hedge, S. U. (1989),

'Designing neural networks using genetic
algorithms', Proceedings of the third international
conference on genetic algorithms and their

applications, pp. 379-384.
71) MANDISCHER, M. (1993) 'Representation and

evolution of neural networks', Artificial neural nets and
genetic algorithms proceedings of the international

conference at Innsbruck, Austria, pp. 643-649. Wien and
New York: Springer.

72) Joao Carlos Figueira Pujol. Evolution of Artificial

Neural Networks Using a Two-dimensional
Representation. PhD thesis, School of Computer

Science, University of Birmingham, UK, 1999.
73) X. Yao (1995f), ``Evolutionary artificial neural

networks,'' In Encyclopedia of Computer Science and
Technology, Vol.33, ed. A. Kent and J. G. Williams,
Marcel Dekker Inc., New York. pp.137-170. Also

appearing in Encyclopedia of Library and Information
Science.

http://www.mendeley.com/research/a-new-algorithm-for-developing-dynamic-radial-basis-function-neural-network-models-based-on-genetic-algorithms/
http://www.mendeley.com/research/a-new-algorithm-for-developing-dynamic-radial-basis-function-neural-network-models-based-on-genetic-algorithms/
http://www.mendeley.com/research/a-new-algorithm-for-developing-dynamic-radial-basis-function-neural-network-models-based-on-genetic-algorithms/
http://www.mendeley.com/research/bp-application-optimizing-bp-neural-networks-algorithm-based-genetic-algorithm/
http://www.mendeley.com/research/bp-application-optimizing-bp-neural-networks-algorithm-based-genetic-algorithm/
http://www.mendeley.com/research/hierarchical-genetic-algorithm-based-neural-network-design/
http://www.mendeley.com/research/hierarchical-genetic-algorithm-based-neural-network-design/
http://www.mendeley.com/research/genetic-algorithm-based-selective-neural-network-ensemble/
http://www.mendeley.com/research/genetic-algorithm-based-selective-neural-network-ensemble/
http://www.mendeley.com/research/modified-backpropagation-algorithms-training-multilayer-feedforward-neural-networks-hardlimiting-neurons/
http://www.mendeley.com/research/modified-backpropagation-algorithms-training-multilayer-feedforward-neural-networks-hardlimiting-neurons/
http://www.mendeley.com/research/modified-backpropagation-algorithms-training-multilayer-feedforward-neural-networks-hardlimiting-neurons/
http://www.mendeley.com/research/training-feedforward-neural-networks-using-genetic-algorithms/
http://www.mendeley.com/research/training-feedforward-neural-networks-using-genetic-algorithms/
http://www.cdtn.br/quem-e-quem/links-para-paginas-nomes-e-pessoas/joao-carlos-figueira-pujol

